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Abstract. The problem of calculating the Casimir force on two conducting planes by means of the stress
tensor is examined. The evaluation of this quantity is carried out using an explicit regularization procedure
which has its origin in the underlying (2+1) dimensional Poincaré invariance of the system. The force
between the planes is found to depend on the ratio of two independent cutoff parameters, thereby rendering
any prediction for the Casimir effect an explicit function of the particular calculational scheme employed.
Similar results are shown to obtain in the case of the conducting sphere.

In 1948 Casimir [1] first predicted that two infinite parallel
plates in vacuum would attract each other. This remark-
able result has its origin in the zero point energy of the
electromagnetic field. While the latter is highly divergent,
the change associated with this quantity for specific plate
configurations has been found in numerous calculations to
be finite as well as cutoff dependent and thus in principle
observable. Early work to detect this small effect [2] was
characterized by relatively large experimental uncertain-
ties which left the issue in some doubt. More recent efforts
[3] have provided quite remarkable data, but are based on
a different geometry from that of Casimir. Since a rigorous
theoretical calculation has never been carried out for the
latter configuration, there remains room for skepticism as
to whether the Casimir effect is as well established as is
frequently asserted.

The most elementary calculation of the Casimir effect
between two parallel conducting planes located at z = 0
and z = a employs a mode summation in the framework
of a regularization which depends only on the frequency
ωk = [k2 + (nπ

a )2]
1
2 where n = 0, 1, 2, .... Upon combining

the result obtained with the corresponding result for the
interval a ≤ z ≤ L where L � a is the z-coordinate of a
third conducting plane, a finite cutoff independent result1
F/A = π2/240a4 is obtained for the Casimir pressure on
the plate at z = a.

A considerably more elegant approach to this prob-
lem is that of Brown and Maclay [4] who employ an im-
age method to calculate 〈0|Tµν(x)|0〉. Thus they showed
that the photon propagator in the presence of conducting
planes at z = 0 and z = a could be expressed in terms of
an infinite sum over the usual (i.e., −∞ < z < ∞) photon
propagator with the z-coordinate of each term in the sum
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1 The units employed here are such that � = c = 1 with the

signature of the metric being (1, 1, 1, −1).

displaced by an even multiple of a. Since the stress tensor
for the electromagnetic case is given by

Tµν(x) = FµαF ν
α − 1

4
gµνFαβFαβ (1)

where
Fµν(x) = ∂µAν(x) − ∂νAµ(x),

it follows that upon taking appropriate derivatives with
respect to the propagator arguments x and x′ and invoking
the limit x → x′ a formal expression can be obtained for
the vacuum expectation value of the stress tensor. On the
basis of covariance arguments together with the divergence
and trace free property of Tµν(x) it was then found in [4]
that

〈0|Tµν (x) |0〉 =
(
1
4
gµν − ẑµẑν

) (
1

2π2a4

) ∞∑
n=1

n−4 (2)

where ẑµ is the unit vector (0,0,1,0) in the z-direction
normal to the conducting planes.

However, there is some reason to question whether this
approach has adequately dealt with the divergences which
invariably occur in Casimir calculations. One notes in par-
ticular that the result (2) is obtained only after an obvi-
ously singular n = 0 term has been dropped from the sum
which occurs in that equation. While one can argue as in
[4] that such an a-independent term can be freely omitted
since it is merely the usual subtraction of the large a re-
sult, it is well to note that the entire sum over n is required
for a demonstration that the propagator satisfies correct
boundary conditions at z = 0, a. Moreover, as is shown in
this work, an appropriately regularized form of (2) does
not necessarily allow a separation into cutoff dependent
terms and a-dependent terms, in contrast with the result
found in [4]. Of still greater import is the fact that more
general regularizations than those usually considered in
this calculation lead to an explicit cutoff dependence of
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the Casimir stress, a circumstance which would seem to
deny its physical significance.

To establish the above claims one reverts from the im-
age approach to one based on expansion of the Green’s
function in terms of orthogonal functions2. To this end
one notes that the free field propagator in the radiation
gauge can be written as

Gij(x − x′, z, z′, t− t′) =
∑
nλ

∫
dkdω
(2π)3

e−iω(t−t′)

× Ai
nλ(k, z)A

j∗
nλ(k, z

′)
k2 − ω2 + (nπ/a)2 − iε

eik·(x−x′) (3)

where λ = 1, 2 refers to the polarization, and spatial co-
ordinates orthogonal to the z-direction are denoted by
a boldface notation. The eigenfunctions Ai

nλ(k, z) satisfy
the equation [

∂2

∂z2 + (nπ/a)2
]
Ai

nλ(k, z) = 0

and are given explicitly by

Ai
n1 (k, z) =

ki

|k|
(
2
a

) 1
2

sin (nπz/a) (4)

and

Ai
n2 (k, z) =

1
|k|ωk

(
ẑiω2

k + ẑ · ∇∇i
) (

2
a

) 1
2

cos (nπz/a)

(5)
where ω2

k = k2 + (nπ/a)2 and ki ≡ εijkj with εij being
the usual alternating symbol. (In the n = 0 case the rhs
of (5) must be multiplied by a factor of 2− 1

2 .) It is impor-
tant to note that each eigenfunction Ai

nλ(k, z) satisfies the
boundary conditions ẑ × E = ẑ · B = 0 at z = 0, a. This
means that it is possible to introduce a regularization such
that contributions from large values of |k| and/or n are
reduced without destroying the validity of the boundary
conditions. This stands in marked contrast with the image
method which has no mechanism for the consistent sup-
pression of the contributions of higher order reflections.

In order to determine the regularization appropriate
to this calculation one should ideally make reference to
the underlying symmetry. Since the latter consists of the
reflection z → a − z and the (2+1) dimensional Poincaré
group, it is natural to seek to classify regularization
schemes according to representations of the latter. The
usual cutoff method for this problem invokes a parameter
which damps out the large ωk contributions, an approach
which makes no reference to the underlying Lorentz in-
variance. A far more appropriate technique is to generalize
this to a cutoff based on a vector σµ in (2+1) dimensions
as well as a scalar cutoff Σ which can be used to suppress
large values of the (2+1) dimensional invariant E2 − P2

2 This approach has been used for the case of the sphere in
C. R. Hagen, Phys. Rev. D 61, (2000) 065005.

where E and P are respectively the energy and momen-
tum operators associated with this (2+1) dimensional sub-
space. Clearly, the credibility of the Casimir effect requires
that the result be independent of the relative importance
of these two competing cutoffs.

The calculation proceeds by noting that since the limit
x → x′ is to be taken symmetrically at some point, it is
appropriate to use only the imaginary part of the propaga-
tor. An appropriately regularized version of this function
can be inferred from (3) to be3

 Gij
σ,Σ(x, x

′) = π
∑
nλ

∫
d3k

(2π)3
δ(k2 + (nπ/a)2)

×Ai
nλ(k, z)A

j∗
nλ(k, z

′)eikµ(x−x′)µeσµkµε(k0)eΣ(−k2)
1
2 (6)

where ε(k0) is the alternating function and a summation
convention has been introduced in the Lorentz invariant
subspace. Note that since both σµ and kµ are three vectors
in that space, they satisfy the orthogonality conditions
ẑµσµ = ẑµkµ = 04. In addition it is clearly necessary to
impose σ2 ≡ −σµσµ > 0 and σ0 > 0 in order that this
propagator exist. It will subsequently be found that its
existence also requires Σ < σ.

To proceed one uses the regularization (6) and the form
of the stress tensor (1). When used in conjunction with the
eigenfunctions (4) and (5) the vacuum expectation value
of the regularized stress tensor can be determined. With
some effort this is found by straightforward calculation to
yield the coordinate independent result

〈0 | Tµν |0〉 = 2π
a

∞∑
n=0

′ ∫
d3k

(2π)3
δ(k2 + (nπ/a)2)eσµkµε(k0)

×eΣnπ/a
[
kµkν + ẑµẑν(nπ/a)2

]
which is manifestly both symmetric and traceless. The
prime on the summation denotes the fact that the n = 0
term must be multiplied by 1

2 as a consequence of the
normalization of Ai

02(k, z). It can be more usefully written
as

〈0 | Tµν |0〉 = 1
a

∞∑
n=0

′
eΣnπ/a

×
(

∂

∂σµ

∂

∂σν
− ẑµẑν ∂2

∂σα∂σα

)
∆nπ/a(−iσ) (7)

where ∆nπ/a(x) is the (2+1) dimensional function

∆nπ/a(x) = 2π
∫

d3k

(2π)3
eikxε(k0)δ(k2 + (nπ/a)2)

for a particle of mass nπ/a. Since this is an O(2, 1) scalar,
∆nπ/a(−iσ) is a function of only the invariant σ which

3 Equivalence to the usual regularization would require that
σi = Σ = 0.

4 To do otherwise would also introduce complications asso-
ciated with the fact that ẑµPµ does not commute with E and
P.



C.R. Hagen: Cutoff dependence of the Casimir effect 679

has the explicit form

∆nπ/a(−iσ) = 1
2πσ

e−σnπ/a.

The insertion of this result into (7) clearly implies that
the sum over n exists only for the case that Σ < σ as
previously stated. Upon performing the summation over
n it follows that

〈0|Tµν |0〉 = (
∂2

∂σµ∂σν
− ẑµẑν ∂2

∂σα∂σα
)F (σ,Σ)

where

F (σ,Σ) =
1

4πaσ
coth

(σ −Σ)π
2a

.

One now carries out the expansion of this expression dis-
carding terms which give no contribution in the limit of
vanishing cutoff, thereby obtaining

F (σ,Σ) →
[

1
2π2

1
σ

1
σ −Σ

− Σ

24a2σ
− (σ −Σ)3π2

1440σa4

]
.

Upon performing the derivatives and rearranging terms
there finally results5,6

〈0|Tµν |0〉
=

[
gµν + 3

σµσν

σ2 − ẑµẑν

] {
− Σ

24a2σ3

+
(2σ −Σ) (σ −Σ) + 2

3σ
2

2π2σ3 (σ −Σ)3
+

π2

1440a4

Σ

σ

(
Σ2

σ2
− 1

)}

+
(
1
4
gµν − ẑµẑν

) [(
1 − Σ

σ

)
π2

180a4 − 4
3π2

1
σ

1
(σ −Σ)3

]
.

If (following [4]) one subtracts the a → ∞ result, this
reduces to the more tractable form

〈0|Tµν |0〉 =
[
gµν + 3

σµσν

σ2 − ẑµẑν

]

×Σ
{

− 1
24a2σ3 +

π2

1440a4σ

(
Σ2

σ2 − 1
)}

+
(
1
4
gµν − ẑµẑν

) (
1 − Σ

σ

)
π2

180a4

5 It is of interest to note that from the metric gµν and the
vectors σµ and ẑµ one can form three second rank tensors
which subsequently reduce to two when the tracelessness con-
dition is applied. The fact that there is no term of the form
(σµẑν +σν ẑµ)(a+bẑµσµ) is a consequence of the orthogonality
condition ẑµσµ = 0 and the invariance under ẑµ → −ẑµ.

6 It should be noted here that the mode summation approach
for parallel plate geometry has been carried out in the case
σµ = −iΛ−1δµ

0 , Σ = 0 by B. DeWitt, Phys. Reports 19C,
(1975) 295. In view of the fact that such a cutoff singles out
the time axis it is not surprising that the result obtained there
for the vacuum stress is the explicitly noncovariant form

Λ4

π2 (g
µν + 4δµ

0 δν
0 ) +

π2

720a4 (g
µν − 4ẑµẑν).

where an overbar notation has been used to denote this
subtraction. It is noteworthy that even this removal of the
large a result does not lead to regularization independent
results, a fact which has been remarked upon earlier.

Of particular interest to Casimir calculations are the
stress components 〈0|T 33|0〉 and the energy density per
unit area E ≡ a〈0|T 00|0〉 which are given by

〈0|T 33|0〉 = − π2

240a4

(
1 − Σ

σ

)
(8)

and

E = − π2

720a3

{
1 − Σ

σ
− 3σ2

0 − σ2

2σ3 Σ

×
[
Σ2

σ2 − 1 − 30a2

π2σ2

]}
(9)

respectively. It is striking that each of these terms retains
a significant dependence on the cutoff details. In addition
the usual relation assumed (as in [4]) to hold between E
and the stress components, namely

〈0|T 33|0〉 = − ∂

∂a
E , (10)

is manifestly contradicted by (8) and (9) in agreement
with results found earlier in the context of the Casimir
energy of a sphere2. It is significant that the relation (10)
asserts a relationship between the vacuum stress 〈0|T 33|0〉
which transforms under O(2, 1) as a scalar while the right
hand side transforms as the µ = ν = 0 component of a
symmetric tensor under this group. Finally, note should be
made of the fact that (9) predicts an additional Casimir
force proportional to the divergent indeterminate form
Σ/a2σ3.

To reinforce the conclusions reached here in the case
of parallel plates it is useful to consider also the case of
the conducting sphere, the only other geometry in three
dimensions which has proved amenable to exact calcula-
tion7. This case was first solved by Boyer [5] and subse-
quently verified by a number of authors [6–9]. Following
reasoning similar to that of the parallel plate case note
is made of the fact that the unbroken symmetry in this
case consists of time translation and rotational invariance.
Thus the natural cutoff parameters in this problem should

7 This leaves the case of one dimension as the only remaining
example of a Casimir effect calculation which is regularization
independent. In that application it could hardly be otherwise
since the leading singularity is proportional to the square of
an inverse cutoff parameter which is necessarily removed by
subtraction of the a → ∞ vacuum. In addition the next to
leading term gives no effect since at most it could contribute a
divergent a independent term to E , thereby leaving a finite cut-
off independent remainder to contribute to the force. In (3+1)
dimensions, however, there are simply too many too many di-
vergences, too many cutoff parameters, and too few physically
reasonable subtractions to obtain a finite cutoff independent
result.
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refer to the energy and angular momentum. The former
is the standard one and is well known to give cutoff in-
dependent results. It will be the goal here to examine the
situation which occurs when a combination of these two
is considered.

This is most economically achieved through2 a useful
separation of the Casimir energy into a finite part and one
which requires regularization. Thus one writes for a sphere
of radius a

Ec = Efin + Eσ

where Ec, Efin, and Eσ are respectively the total, the reg-
ularization independent part, and the formally divergent
parts of the Casimir energy. The quantity Eσ is given by

Eσ =
1

4πa

∞∑
l=1

�e−iφ

∫ ∞

0
dy exp(−iνσye−iφ)y

d

dy

×(1 + y2e−2iφ)−3

where ν = l + 1
2 , 0 < φ < π

2 , and σ is a dimensionless
cutoff used to suppress the high frequency modes. Upon
choosing a secondary cutoff of the form e−Σν it is readily
found that ∆Eσ (the change induced in Eσ in the limit of
small cutoff) is given by

∆Eσ = − 3Σ
2πaσ2

∫ ∞

0
dy

y2

(1 + y2)4
1

y2 + (Σ2/σ2)
.

This is evaluated to yield

∆Eσ = − 3
64a

Σ

(Σ + σ)4
[Σ2 + 4σΣ + 5σ2],

a result which displays yet again the cutoff dependence
of the Casimir effect for a more general choice of regular-
ization. It may be noted that aside from confirming the
vanishing of ∆Eσ for Σ = 0, this result shows that ∆Eσ

goes as Σ−1 for σ → 0 with intermediate values being
obtained for finite Σ/σ.

In this work it has been shown that the Casimir ef-
fect is, prevailing opinion notwithstanding, highly depen-
dent on the particular form of regularization employed for
the extraction of the force. As remarked earlier the re-
cent experiments which have seemed to many to provide
the long awaited precision verification of this highly sub-
tle effect are not based upon rigorous mathematical cal-
culation. While the parallel plate Casimir experiment is
fraught with difficulties beyond the ken of this author, it
would seem that the successful completion of such exper-
iments would be invaluable for purposes of setting to rest
some of the issues which have been raised in this work.

Finally, it would be remiss not to mention in some
way the very extensive work on the calculation of Casimir
forces using the technique of zeta function regularization
[10]. Historically, the successes of the Casimir approach
in dealing with the parallel plate geometry and the sphere
were obtained using conventional field theoretical subtrac-
tion procedures. Specifically, it was noted that only
changes relative to the vacuum could be considered ob-
servable and it was therefore totally consistent to perform
subtractions relative to the a → ∞ vacuum. However, this
step did not succeed in allowing one to obtain finite and
observable results in more general applications. Eventu-
ally it was realized, however, that the application of zeta
function regularization to such problems could yield finite
results for some fairly general cases while at the same time
agreeing with those obtained in the few instances in which
more conventional subtractions could be successfully ap-
plied. This work makes no claim to having established
any inconsistencies in the derivation of finite results for
the Casimir effect when those efforts are based on the twin
axioms of vacuum energy and zeta function regularization.
Rather, the calculations presented here establish that the
Casimir effect is generally cutoff dependent and hence in-
capable of being reliably determined whenever such calcu-
lations are performed using conventional (i.e., physically
plausible) subtraction procedures.
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